Lipopolysaccharide Induces Pro-Inflammatory Cytokines and MMP Production via TLR4 in Nasal Polyp-Derived Fibroblast and Organ Culture
نویسندگان
چکیده
Nasal polyposis is characterized by persistent inflammation and remodeling in sinonasal mucosa. Toll-like receptors (TLRs) play a role in the innate immune response to microbes in the sinonasal cavity. The aim of this study was to evaluate whether nasal polyp-derived fibroblasts (NPDFs) and organ-cultured nasal polyps can synthesize pro-inflammatory cytokines and matrix metalloproteinases (MMPs) after exposure to lipopolysaccharide (LPS), a TLR4 agonist. NPDFs and organ-cultured nasal polyps were isolated from nasal polyps of 8 patients and exposed to LPS. The mRNA and protein expression levels of TLRs, cytokines, and MMPs were determined using a gene expression microarray, real-time RT-PCR, western blot analysis, enzyme-linked immunosorbent assay, and immunofluorescence staining. The enzymatic activities of MMPs were analyzed using collagen or gelatin zymography. The protein expression level of MMP-1 increased in nasal polyp tissues compared to inferior turbinate tissues. LPS induced mRNA expression of TLR4, IL-6, IL-8, and MMP-1 and activated MAPK signaling in NPDFs. LPS promoted the release of interleukin (IL)-6 through extracellular signal-related kinase (ERK) and IL-8 through ERK and c-Jun N-terminal kinases (JNK). Production of IL-6 and IL-8 was induced by PI3K/Akt signaling in LPS-stimulated NPDFs. LPS increased the transcript and protein expression levels of MMP-1 and induced collagenase activity of MMP-1 via ERK and p38, but did not induce gelatinase activity of MMP-2 and MMP-9. LPS from Rhodobacter sphaeroides (LPS-RS) inhibited the stimulatory effects of LPS in NPDFs as well as in organ culture of nasal polyp. LPS triggers immune response via TLR 4 and activates MAPK and PI3K/Akt signaling pathway, which is involved in remodeling of nasal polyps.
منابع مشابه
The effect of down-regulation of CCL5 on lipopolysaccharide-induced WI-38 fibroblast injury: a potential role for infantile pneumonia
Objective(s): Aberrant expression of CCL5 has been found in several kinds of inflammatory diseases, and the roles of CCL5 in these diseases have also been reported. However, the role of CCL5 in infantile pneumonia is still unclear. Thus, the function and acting mechanism of CCL5 in the in vitro model of infantile pneumonia were researched in this study. Materials and Methods: Human fetal lung f...
متن کاملAnti-neuroinflammatory of Chloroform Extract of Panax ginseng Root Culture on Lipopolysaccharide-stimulated BV2 Microglia Cells
Background: It is believed that activation of microglia in the central nervous system upon detection of stimulus like lipopolysaccharides provokes neuroinflammation via the production of pro-inflammatory mediators and cytokines. The cytoprotective and anti-inflammatory properties of various folk medicine has been gaining attention as a strategy to combat various disease. This study aimed to ass...
متن کاملProtective Effects of Interleukin-4 on Tissue Destruction and Morphological Changes of Bovine Nasal Chondrocytes in vitro
Background: Previous studies have shown that some cytokines have protective effects on cartilage in joint diseases. In the current study, effects of IL-4 against morphological changes and tissue degradation induced by IL-1α on bovine nasal cartilage (BNC) explants were investigated. Methods: Fresh BNC samples were prepared from a slaughterhouse under sterile conditions. BNC explants culture was...
متن کاملβ-arrestin 2 attenuates lipopolysaccharide-induced liver injury via inhibition of TLR4/NF-κB signaling pathway-mediated inflammation in mice
AIM To study the role and the possible mechanism of β-arrestin 2 in lipopolysaccharide (LPS)-induced liver injury in vivo and in vitro. METHODS Male β-arrestin 2+/+ and β-arrestin 2-/- C57BL/6J mice were used for in vivo experiments, and the mouse macrophage cell line RAW264.7 was used for in vitro experiments. The animal model was established via intraperitoneal injection of LPS or physiolog...
متن کاملDimethyl itaconate protects against lipopolysaccharide-induced endometritis by inhibition of TLR4/NF-κB and activation of Nrf2/HO-1 signaling pathway in mice
Objective(s): Endometritis is the inflammation of the uterine lining that is associated with infertility. It affects milk production and reproductive performance and leads to huge economic losses in dairy cows. Dimethyl itaconate (DI), a promising chemical agent, has recently been proved to have multiple health-promoting effects. However, the effects of DI on endometri...
متن کامل